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1. Introduction

Complementarity plays an important role in both general equilibrium
theory [1] and mathematical programming. We will be concerned with the
linear complementarity problem (LCP) of finding an x in R" such that

Mx +v >0, x >0, <x,(Mx +v)> =0 (LCP)

where M is a given n x n matrix and v 1is a given vector in R® .
Applications of this problem can be found in such areas as economics,
engineering, and game theory (see, for example, [2], (7] ). A number

of algorithms [4], [7], [9] have been specifically designed to take
advantage of the special structure it offers. In each case, however,

their applicability is limited by the requirement that M satisfy

certain conditions. In this paper, we offer a solution to LCP that is
independent of the structure of M . Our approach is based on Mangasarian's
[8] observation that the linear complementarity problem is equivalent to
minimizing a piecewise linear concave function of a polyhedral set

contained in the nonnegative orthant; i.e.,

siesduils e ot
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n
. m{? % {min(o0, Mix- x; + Vi) +x, } (1)
xes i=1

where S = {x : Mx+v >0, x>0} and M, is the ith row of M . ;

i

In the manner described by Bard and Falk [3], a general branch
and bound algorithm is used to solve a separable representation of (1).

In fact, if Mx + v in LCP is replaced by g(x) , where g 1is an

implicitly separable funciion which maps Rn into itself, the same

methodology can be used to solve the more general problem that results.

In the next section, a brief discussion of the branch and bound

algorithm is given. Following this, the characteristics of a linear

program (LP) equivalent to LCP are presented and a comparison is made
between this problem and the series of subproblems set up by the algorithm
under the branch and bound philosophy. Special attention is paid to

the case where the algorithm can be expected to produce a solution to

the linear complementarity problem on its first iteration. Finally,

two examples are presented and the results contrasted with alternative

solution techniques. 1

2. The Branch and Bound Algorithm

The algorithm that we will use for the computations was proposed b

by Falk [5] and coded by Grotte [6]. As applied to nonconvex problems

with linear constraints, it provides approximate solutions by replacing f
each of the original functions with their piecewise linear convex envelopes. {
The branch and bound procedure solves this lower bounding problem first
to get estimates on the optimal value of the approximating problem, and
to set up new problems, if the estimates do not yield a global solution. |
When all the original functions are piecewise linear, as they are in (1),

the solution will be exact, rather than approximate.

Branch and bound algorithms designed to solve mathematical programs

generally produce sequences of upper and lower bounds that converge at the

- D -
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optimal value. This is, indeed, the case with MOGG (the computer code);

however, if a solution to LCP exists, the value of the objective function
in (1) at the solution will be zero. Knowing this fact greatly improves
the efficiency of the algorithm by permitting an independent check for
convergence to be made at each iteration.

3. An Equivalent Linear Program

Mangasarian [8] has shown that for any real n x n matrix M,

if the solution to LCP exists, it can be obtained by solving the linear
program,

min {cx: x € S} (LP)

where ¢ 1is some suitable vector in R The following set of conditions

(see (8] Theorem 1), given here for completeness, characterizes a suitable
¢ vector.

c=r+ MTs, (r,s) > 0 (2.1)
MZ, = Z, + vd! (2.2)
1 2 5

T T
<H,(Yl—sd )> + (Yz—rd ) =0 (2.3)
T T
<r,2.> + <8,2,> - <v,(Y,=sd")> = p (2.4)
1 2 1
diag p = diag (Y1+¥2) >0 (2.5)

Zl, 22 €2, Yl' Y2, d, p

v

0 (2.6)

where r, s, d, p are all in Rn , and Zl, 22, Yl’ YZ are all in
- 3 2 1is the set of all real square matrices with nonpositive off-

diagonal elements.

Because of the presence of two bilinear conditions (2.3) and (2.4),
it is not easy in general to determine a c¢ vector for an arbitrary M .

However, for a number of special cases including those when M is a
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Z-matrix , or when M is strictly or irreducibly diagonally dominant [10]

a suitable c can be obtained through a series of intermediate calculations
and the linear complementarity problem can be solved as an ordinary linear
program,

Unfortunately, even for these special cases, it is rarely a straight-
forward matter of identifying the matrices, vectors, and side conditions
that are needed to calculate a suitable c¢ vector. When the dimensions
of the problem are greater than three, the work required to determine
which linear program to solve begins to rival the work required to obtain
a solution to LCP. Those cases where c¢ can be easily determined are

discussed in Section 5.

4. The Relationship Between LP and MOGG

In addressing LCP, MOGG sets up and solves a series of linear
programs that closely resemble LP. The constraint region of each sub-
problem is identical to that of LP, but the cost coefficients vary from
iteration to iteration. Eventually, MOGG selects a '"correct'" set of
coefficients and produces a solution. The coefficients are correct
only in the sense that the supporting hyperplane (objective function)
at the solution of the associated linear program passes through the
origin. They are not necessarily equal to the value of a ¢ in LP
as determined by conditions (2.1) - (2.6). There is no guarentee that
the objective function in LP evaluated at the solution will be equal to
zero. 1o see this, let us introduce a set of auxiliary variables LA
(1 =1,...,n) for the purpose of transforming (1) into a separable
programming problem; that is:

n
min I {min(O,wi) + xi} 3)
xeS 1i=1

weW

subject to

i=1l,...,n

8
|
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where W is an arbitrarily large hpyerrectangle in X .

The iterative procedure used by MOGG to solve (3) was described
in Section 2. The equivalent series of linear programs addressed in
this proceddre can be given in terms of the original variables and a
parameter o in R" as follows:

n
misz % {a,w, + x,} (4.1)
XES i=1 +3 i
weW
subject to
w, - Hix + Xy = vy m Joee st (46.2)

where &, assumes one of the following three values: 0, 1/2, 1,
depending upon which stage the algorithm is in. At the first stage,

ai =1/2 (i=1, 2,...,n) ; this represents the convex underestimating
problem. Although there are 2 possible combinations of the ai's,
some of the associated linear programs turn out to be redundant and are
not addressed by MOGG. It is possible to verify through enumeration that

2n+l - 1 is the maximum number of subproblems that might have to be

solved.

Each auxiliary variable wy in problem (4) can be eliminated
by substituting its equivalent, as determined from (4.2), into (4.1),
and noting that W is arbitrarily large. Lemma 2 in [8] assures that

the solution of LCP occurs at a vertex of S . The resulting problem is

n
min I {x

+ o, (M,x - x, +v,)}
xeS i=1 i : A i i
n
<=> min I { (1-o,)x, + o, M,x}, (5)
xES i=1 o i

which has the same constraint region as LP; hence, any solution to LP

UN—— T
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will be both feasible and optimal to (5). This leads to the following lemma
7 which characterizes immediate solutions to LCP.

LEMMA 1. Let the linear complementarity problem have a solution,
and let the objective function ¢ of the associated linear program satisfy
conditions (2.1) - (2.6). Now, if, for some y > 0,

n

cj =y {1+ 1E1 Mij 2 f [ et SRR | (6)

i then Falk's algorithm will produce a solution to either problem on its
first iteration.

This can be seen by letting a, = 1/2 (i =1,...,n) and equating
! the cost coefficients of LP and (5). The applicability of this result

is more general than it would first appear because ¢ will usually assume

a range of values.

In fact, (6) is only a sufficient condition for the algorithm to
produce a solution on its first iteration. A necessary and sufficient

n .
condition would be that the vector Y (1 o 121 M s 1 ™ 3,2 00048

)
lie in the cone formed by the gradients of the binding constraints of

the associated linear program. This condition, of course, is untestable :
in that the calculation of c¢ offers no hint as to which constraints
will be binding at the solution.

5. A Verifiable Case

In general, even if a suitable c¢ 1is known, the only way to
determine if MOGG will produce a solution to LCP on its first iteration
is by evaluating (6). In this section we examine the special case where
c assumes a unit structure and show that in this instance the solution
is immediate. A statement of this result is contained in the following
theorem.

THEOREM 1. Let x* golve LCP. If M is such that c¢ = Be

et e e ot st e
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satisfies conditions (2.1) - (2.6) for some R > O

and e = (1’1$°'°’1)
then MOGG will produce a solution o LCP on its first iteration.

PROOF: Let (x*, uf, u3) in R" x R® x R® solve LP, where u¥

1
and ug are the Kuhn-Tucker multipliers associated with the inequality

constraints Mx* + v > 0 and x* > 0 , respectively. It will be shown

that there exists a corresponding point (x*, ﬁl’ ﬁ2) in R" x R" x R"

that satisfies the Kuhn-Tucker conditions for (5) with a, = 1/2

i
_ (} =1,...,n) and is thus the solution to the first subproblem set up by
MOGG. ;
' Letting c¢ = Be , the first order necessary conditions for LP
that require that
1 M
y ” .ll &
8 - ull g N A u1n
~ : 1 M
K 1 %)
y 1 0
* 0 ’
+ u21 E L, SEPRE, uz (‘)
0 1
iF ( X k%
o T o u2) is to be a solution. Similarly for (5) with ai =1/2
n
1+ & Mij M, ) M,
i=1 3
1 4 e 0 O pilaadigi: TN G
. n
M ‘M
1+ I M 1n nn
1=1 in (8)
0
+u12 o +u2n 0 .
1

Multiplying (8) by 28 and rearranging we get

st o

e
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The following example [8] illustrates the equivalence stated in

Theorem 1 while concurrently demonstrating the impracticality of casting

the linear complementarity problem as a linear prcyram when ¢ is not

explicicly given. The example is based on the following theorem.

THEOREM 2 (Mangasarian [8]). If S ¢ ¢ and there exist r,s in
RY, 2, 2, in R such that

| = T
| MZ1 22 + vd
<r,Z

> +<g,2.> >0

1 2

<r,(Zl+D)> + <s,(ZZ+D)> >0, D=4diag d

Z1 . Z2 in Z2;d,r,s>0

then LCP has a solution which can be obtained by solving LP with ¢ = r + MTs .
EXAMPLE 1.
0 3 & -2
M= =k =L 0 and v = 0 .
2 -1 -3

This example satisfies the conditions of Theorem 2 with d =s =e , r = 0 ,

-0 0 0 2 -1 =2\
z, = 0-1 0 and 2, = -1 0 o) .
0 -1 -1 0 2

Now ¢ =r + MTs =0+ MTe = e ; hence, by Theorem 1 with B =1 (or Lemma 1

with y = 1/2) we have the equivalence of (5) and LP. As expected, the first
iteration of the algorithm produced the equilibrium point x* = (2/5, 2/5, 1/5).
It is interesting to note that this problem cannot be solved by either Lemke's
method or the principal pivoting procedure [4].

The next example [8] illustrates the case where a solution to the

e .;z.n.;‘.m

e
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linear complementarity problem is not obtained on the first iteration
of MOGG.

EXAMPLE 2.

-1 1 1
M= and v =
2 -1 -1

This example also satisfies the conditions of Theorem 2 with

-1 0 -1 0
T T T < o
r = (0,1), s = (1,0), d = (0,2), Zl = » 22 -~ ’
0 2 -1 0
and ¢ = (-1,2) . The associated linear program has the (unique) solution

X, = T Xy = 0 which expectedly solves the linear complementarity problem.
When MOGG was used to solve this problem, the solution was found after
three stages of branching had taken place. The branch and bound tree is
depicted in Figure 1, and, as can be seen, six of the seven potential
subproblems had to be examined before convergence could be established.
(The numbers adjacent to the nodes represent the upper and lower bounds

for the associated subproblems.)

Figure 1 Branch and Bound Tree for LCP Example 2

- 10 =




When Lemke's method was tried on this problem, an unbounded
(infeasible) ray was generated by letting X, + o . thus precluding a
solution. The principal pivoting algorithm also ran into trouble by
cycling rather than converging to solution.

From these two examples, we see that MOGG offers a clear advan-
tage in solving the linear complementarity problem over the principal
alternatives. Because MOGG does not insist upon a special matrix
structure, it will solve all such problems without first having to
check the properties of M or evaluate an often unwieldy set of

nonlinear conditions.

In general, the branch and bound approach would appear to offer
the dual advantage of being universally applicable, and computationally
superior. This results directly from the guarantced upper bound, and
the simple three-segment form of the objective furction.

« i} =

e
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